Другие журналы

научное издание МГТУ им. Н.Э. Баумана

НАУКА и ОБРАЗОВАНИЕ

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл № ФС 77 - 48211.  ISSN 1994-0408

Модель воздействия кавитационного пузырька на стенку канала в приближении точечного взрыва в несжимаемой жидкости

# 07, июль 2012
DOI: 10.7463/0712.0435175
Файл статьи: 1Воробьёв_P.pdf (1022.30Кб)
авторы: Алимов М. А., Воробьев Д. А., Хвесюк В. И.

УДК. 532.5

Россия, МГТУ им. Н.Э. Баумана

errivion@yandex.ru

den_vorobyow@mail.ru

khves@power.bmstu.ru

 

ВВЕДЕНИЕ

 

При работе лопастных механизмов, таких как гидравлические насосы, гребные винты, гидравлические турбины, наступление кавитации влечет за собой изменение характера течения, приводящее к уменьшению КПД и тяги, рассогласованию между рабочими механизмами и приводными машинами (двигателями). Также возникновение кавитации приводит к кавитационной эрозии, разрушающей рабочие поверхности насосов, винтов и турбин и заключающейся в импульсном воздействии высокого давления, создаваемого схлопывающимся кавитационным пузырьком, на рабочую поверхность механизма.

Вопрос обмена импульсом между кавитационным пузырьком и  ограждающей стенкой интересен для более полного понимания механизма кавитационной эрозии. В доступной литературе [1-3, 5, 6], связанной с явлением кавитации,  не было найдено исследований по определению импульса, передаваемого пузырьком стенке. В данной статье на основе теоретического исследования процессов динамики кавитационных пузырьков и их воздействия на стенку канала разработана методика расчета гидромеханического импульса, передаваемого единичным схлопывающимся кавитационным пузырьком стенке канала. В работе впервые строго поставлена и численно решена задача о точечном взрыве кавитационной каверны, образующейся на месте схлопнувшегося кавитационного пузырька внутри несжимаемой жидкости.

 

1.           УРАВНЕНИЕ ДВИЖЕНИЯ ГРАНИЦЫ ПУЗЫРЬКА

 

«Закон» эволюции пузырька описывается уравнением Рэлея, полученным на основании сферической симметрии пузырька. В таком случае движение является безвихревым с потенциалом скоростей φ, который удовлетворяет уравнению Лапласа

 

Подробный вывод уравнения движения границы пузырька приводится в [5]. Здесь ограничимся лишь интересующим  нас видом этого уравнения – интегралом Лагранжа-Коши

 

 

где  r – текущий радиус пузырька, м; pr – давление на границе пузырька, Па; ρ – плотность жидкости, кг/м3; F(t) – функция внешнего воздействия на пузырек, м22.

Давление    определяется по формуле Лапласа

 

где  pg– давление нерастворенных газов внутри пузырька, Па; ps – давление насыщенных паров жидкости, Па; σ – коэффициент поверхностного натяжения, Н/м.

Давление pgнаходится из условия адиабатического «закона» эволюции пузырька

 

где  R0 – начальный радиус пузырька, м; pg0 – давление не растворившихся газов внутри пузырька при r = R0, Па; γ – показатель адиабаты.

При действии на пузырек только внешнего давления жидкости, неизменного во времени, функция внешнего воздействия имеет вид

 

где  p – давление в жидкости, окружающей пузырек, Па.

Окончательное уравнение (1) движения границы пузырька с учетом содержания в пузырьке нерастворенного газа, сил поверхностного натяжения, а также (2) - (4) имеет вид

 

На рис. 1 приведен график изменения функции (5)  (квадрата скорости границы пузырька) от его текущего размера при начальном радиусе пузырька R0 = 10-4 м (жидкость – вода).

Описание: C:\Users\Den\Desktop\рисунок 1.png

Рис. 1. Зависимость квадрата скорости границы кавитационного пузырька от его текущего радиуса при различных давлениях в жидкости

 

2.           ЭКСТРЕМАЛЬНЫЕ РАДИУСЫ ПУЗЫРЬКА

 

Поскольку (5) является выражением для квадрата первой производной радиуса по времени, то пересечение графика с осью абсцисс дает значение максимального радиуса пузырька.

Из рис. 1 видно, что с ростом давления скорость роста пузырька увеличивается, а его максимальный радиус – уменьшается. Также анализ выражения (5) показывает, что рост пузырька будет наблюдаться при его начальном радиусе  R0 ≥ 1,3.10-6 м.

Минимальный радиус пузырька определяется выражением [5]

 

3.           МОДЕЛЬ ТОЧЕЧНОГО ВЗРЫВА [4]

 

При движении кавитационного пузырька в жидкости сначала происходит его рост в области, где давление в жидкости меньше давления насыщенных паров за счет испарения жидкости внутрь пузырька. Затем, при попадании пузырька в область с давлением выше давления насыщения, происходит схлопывание (коллапс) пузырька.

Под воздействием давления в жидкости оболочка пузырька начинает движение по направлению к центру с повышающимся ускорением. За счет термодинамических газовых процессов в кавитационном пузырьке повышаются давление и температура внутри пузырька. Кавитационный пузырек запасает кинетическую энергию, достаточную для преодоления растущего давления. С ростом давления содержание пузырька начинает конденсироваться на внутренней стороне оболочки пузырька, что понижает давление в пузырьке. И поэтому оболочка пузырька может уменьшаться далее.

В последней стадии пузырек захлопнется и при этом выделится кинетическая энергия.   В данной работе принимается, что запасенная кинетическая энергия переходит в энергию взрыва.

Точечный взрыв рассматривается как образование и рост пустой сферической каверны. Уравнение движения границы каверны имеет вид

где rс – текущий радиус каверны, м.

В безразмерных переменных [4] уравнение (7) имеет вид

здесь

 

где r – текущий радиус, м; Rc_max - максимальный радиус каверны, м; t – время, с.

Поле давления вокруг расширяющейся каверны определяется выражением

 

Кинетическая энергия схлопывающегося кавитационного пузырька определяется по формуле [5]

где  р0 – давление в жидкости, соответствующее максимальному радиусу пузырька, Па.

Энергия, выделяющаяся в центре взрыва, согласно [4] равна

 

 

Максимальный радиус каверны определяется из условия полного перехода кинетической энергии пузырька в энергию взрыва, то есть  T = E0. Формула для определения максимального радиуса каверны имеет вид

 

Поскольку развитие взрывной каверны происходит из схлопывающегося кавитационного пузырька, то начальным радиусом каверны является наименьший диаметр кавитационного пузырька: rc0 = Rmin.

С учетом (9) выражение (10) преобразуется к виду, удобному для расчетов

 

На рис. 2 приведено распределение давления в безразмерных координатах, рассчитанное по выражению (12) при различных значениях l1 и  R0 = 10-5 м. 

Описание: C:\Users\Den\Desktop\Наука и Образование\рисунок 2.png

Рис. 2. Зависимость безразмерного давления от размера каверны

 

В задаче о точечном взрыве рассматривается эволюция пустой каверны, однако, по уравнению (12) может быть рассчитано поле давления внутри каверны. В реальных условиях внутри сферической каверны должен находиться нерастворенный газ, а также пары воды. В первом приближении удобно принять, что давление внутри каверны равняется давлению на ее границе и неизменно во всем объеме каверны. При этом сама кавитационная каверна служит динамической моделью «ударной волны».

На границе каверны выполняется условие

 

Уравнение (12) на границе каверны имеет вид

 

Присутствующий внутри каверны присутствует газ должен находиться в равновесии с окружающей средой, т.е. его давление на границе каверны должно определяться выражением (13). Кроме того, за отсутствием информации об изменении величины давления в каверне при движении от ее центра к границе, будем считать, что давление имеет одно и то же значение во всем объеме каверны. На рис. 3 в безразмерных координатах представлена зависимость давления внутри растущей каверны при изменении ее размера от 0 до 1.

Описание: C:\Users\Den\Desktop\Наука и Образование\рисунок 3.png

Рис. 3. Изменение давления внутри каверны при увеличении ее размера от 0 до 1.

 

4.           ИМПУЛЬС, ПЕРЕДАВАЕМЫЙ СТЕНКЕ ВЗРЫВНОЙ КАВЕРНОЙ 

 

На рис. 4 показан рост кавитационной каверны непосредственно у стенки.

Описание: C:\Users\Den\Desktop\bubble.jpg

Рис. 4. Рост каверны у стенки

 

Импульс, передаваемый каверной (или, иными словами, кавитационным пузырьком) стенке, может быть рассчитан по формуле

где   pc(lc), Sc(lc), tc(lc) – соответственно зависимости давления на границе каверны, площади взаимодействия и времени взаимодействия каверны со стенкой от ее (каверны) текущего размера.

Так как импульс стенке передается только за счет избыточного давления, то выражения (12), (13) должны быть преобразованы к виду

 

 

Выражение (15) определяет поле давления вокруг каверны, а (16) – давление газа внутри нее.

Безразмерное время взаимодействия находится из выражения (8). Интегрирование от минимального размера каверны до некоторого текущего размера дает

 

Подстановка выражения (17) в (9) позволяет получить формулу для расчета времени взаимодействия

 

Площади взаимодействия внутри и снаружи каверны, соответственно, определяются по формулам

 

Поскольку импульс может передаваться стенке как газом, находящимся внутри каверны, так и жидкостью, ее окружающую, то следует выделить две составляющие импульса. Первая составляющая («внутренняя») получается из выражения (14) подстановкой в него выражений (16), (18) и (19), вторая («внешняя») – подстановкой в (14) выражений (15), (18) и (20).  Ниже приведены формулы для расчета «внутренней» и «внешней» составляющих соответственно:

 

 

Здесь

 

Согласно вышесказанному полный импульс, передаваемый кавитационным пузырьком стенке канала, рассчитывается по формуле

 

 На рис. 5 представлена зависимость величины импульса, передаваемого стенке, от начального радиуса кавитационного пузырька.

 

Описание: C:\Users\Den\Desktop\Наука и Образование\рисунок 4.png

Рис. 5. Зависимость величины импульса, передаваемого стенке, от начального радиуса кавитационного пузырька

 

На рис. 6 и 7 приведены графики изменения импульса от безразмерного расстояния (0 < h <1) от стенки, на котором происходит схлопывание пузырьков, при двух различных начальных радиусах кавитационных пузырьков.

 

Описание: C:\Users\Den\Desktop\Наука и Образование\рисунок 6.png

Рис. 6. Зависимость величины импульса от расстояния, на котором происходит схлопывание пузырька, R0 = 3,779 10-5 м.

 

Описание: C:\Users\Den\Desktop\Наука и Образование\рисунок 7.png

Рис. 7. Зависимость величины импульса от расстояния, на котором происходит схлопывание пузырька, R0 = 7,962 10-5 м.

 

 

ЗАКЛЮЧЕНИЕ

 

Приведена методика расчета импульса, передаваемого единичным кавитационным пузырьком стенке канала.  Основой методики расчета процесса схлопывания пузырька является модель точечного взрыва в несжимаемой жидкости в приближении неизменности сферической симметрии решаемой задачи. Такой подход позволяет довольно просто оценить в первом приближении импульс, передаваемый пузырьком к стенке.

Получены численные значения импульса, предаваемого стенке при схлопывании сферического кавитационного пузырька в воде, при различных начальных радиусах пузырька, а также при различных расстояниях от стенки.

 

 

ЛИТЕРАТУРА

 

1.           Горшков А.С. Кавитационные трубы. Монография / Горшков А.С., Русецкий А.А., Борусевич В.О. - СПб.: ЦНИИ им. акад. А.Н. Крылова, 2007.- 252 с.

2.           Десятов А.В. Эволюция одиночного пузырька при внезапном изменении внешнего давления в окружающей жидкости / А.В. Десятов, М.Д. Диев, Д.Н. Морской, А.Н. Пономарев, С.Г. Черкасов // Четвертая российская национальная конференция по теплообмену, 23 -27 октября 2006 года: труды. – М.: Изд. дом. МЭИ, 2006.- Т. 5.- С. 249 – 252.

3.           Кнэпп Р. Кавитация. / Кнэпп Р., Дейли Дж., Хэммит Ф. - М.: Мир, 1974.- 688 с.

4.           Коробейников В.П.  Теория точечного взрыва. / Коробейников В.П., Мельникова Н.С., Рязанов Е.В. – М.: Физматгиз,   1961.- 258с.

5.           Перник А.Д. Проблемы кавитации 2-е изд., испр. и доп. / Перник А.Д. – Л.: Судостроение, 1966.- 440 с.

6.           Термины и определения. Способы возбуждения кавитации. Динамика кавитационного пузырька [Электронный ресурс]. - Режим доступа: http://esmorodov.narod.ru/G1.pdf  (07.06.2012).


Тематические рубрики:
Поделиться:
 
ПОИСК
 
elibrary crossref ulrichsweb neicon rusycon
 
ЮБИЛЕИ
ФОТОРЕПОРТАЖИ
 
СОБЫТИЯ
 
НОВОСТНАЯ ЛЕНТА



Авторы
Пресс-релизы
Библиотека
Конференции
Выставки
О проекте
Rambler's Top100
Телефон: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2018 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Тел.: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)