Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

# 12, December 2016
DOI: 10.7463/1216.0852444
Article file: SE-BMSTU...o056.pdf (1421.81Kb)
authors: S.A. Burtsev1,2,*, Yu.A. Vinogradov1, N.A. Kiselev1,2, M.M. Strongin1

1 Lomonosov Moscow State University, Moscow, Russia

2 Bauman Moscow State Technical University, Moscow, Russia

The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given.
We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers.
These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients) on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop), the amount of heat transferred, as well as the average logarithmic temperature difference.
The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance.
Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermal-hydraulic efficiency.
For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger.
It is shown that further work development should be aimed at the search for optimal heat transfer surfaces and at clarifying the criteria for thermal-hydraulic efficiency. Consideration of the effect of heat transfer on the outside surface of the tubes, thermal conductivity of the tube material, as well as the appearance of fouling on heat transfer surfaces is required.

  1. Ligrani P.M., Oliveira M.M., Blaskovich T. Comparison of heat transfer augmentation techniques. AIAA J., 2003, vol. 41, iss. 3, pp. 337 -- 362. DOI: 10.2514/2.1964
  2. Ligrani P.M. Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines. Intern. J. of Rotating Machinery, 2013, pp.1 -- 32. DOI: 10.1155/2013/275653
  3. Wen-Tao Ji, Jacobi A.M., Ya-Ling He, Wen-Quan Tao. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow. Intern. J. of Heat and Mass Transfer, 2015, vol. 88, pp. 735 -- 754. DOI: 10.1016/j.ijheatmasstransfer.2015.04.008
  4. Webb R.L., Eckert E.R.G. Application of rough surfaces to heat exchanger design. Intern. J. of Heat and Mass Transfer, 1972, vol. 15, iss. 9, pp. 1647-1658. DOI: 10.1016/0017-9310(72)90095-6
  5. Gee D.L., Webb R.L. Forced convection heat transfer in helically rib-roughened tubes. Intern. J. of Heat and Mass Transfer, 1980, vol. 23, iss. 8, pp. 1127-1136. DOI: 10.1016/0017-9310(80)90177-5
  6. Han J. C., Park J. S. Developing heat transfer in rectangular channels with rib turbulators . Intern. J. of Heat and Mass Transfer, 1988, vol. 31, iss. 1, pp. 183 -- 195. DOI: 10.1016/0017-9310(88)90235-9
  7. Han J. C., Zhang Y. M., Lee C. P. Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs. Transactions of the ASME. Journal of Heat Transfer, 1991, vol. 113, iss. 3, pp. 590 -- 596. DOI: 10.1115/1.2910606
  8. Han J. C., Huang J. J., Lee C. P. Augmented heat transfer in square channels with wedge-shaped and delta-shaped turbulence promoters. J. of Enhanced Heat Transfer, 1993, vol. 1, iss. 1, pp. 37 -- 52. DOI: 10.1615/JEnhHeatTransf.v1.i1.40
  9. Taslim M. E., Li T., Kercher D. M. Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls. Transactions of the ASME. Journal of Turbomachinery, 1996, vol. 118, iss. 1, pp. 20 -- 28. DOI: 10.1115/1.2836602
  10. Taslim M. E., Wadsworth C. M. An experimental investigation of the rib surface-averaged heat transfer coefficient in a rib-roughened square passage. Transactions of the ASME. Journal of Turbomachinery, 1997, vol. 119, iss. 2, pp. 381 -- 389. DOI: 10.1115/1.2841122
  11. Taslim M. E., Lengkong A. 45 deg staggered rib heat transfer coefficient measurements in a square channel. Transactions of the ASME. Journal of Turbomachinery,1998, vol. 120, iss. 3, pp. 571 -- 580. DOI: 10.1115/1.2841755
  12. Baibuzenko I.N., Sedlov A.A., Ivaniv V.L., Schegolev N.L. 77-30569/256283 Experimental survey of heat transfer characteristics in inner channels of turbomachine cooling systems when using thermochromic liquid crystals. Nauka i obrazovanie MGTU im. N.E.Baumana.[Science & Education of the Bauman MSTU], 2012, no.1. Available at: http://technomag.neicon.ru/doc/256283.html, accessed 02.10.2016.
  13. Egorov K.S., Schegolev N.L. Investigation of characteristics of high-compact plate-fin heat-exchange surfaces with shifted fin. Nauka i obrazovanie MGTU im. N.E.Baumana.[Science & Education of the Bauman MSTU], 2012, no. 6. DOI: 10.7463/0612.0431788
  14. Mahmood G. I., Hill M. L., Nelson D. L., Ligrani P. M., Moon H.-K., Glezer B. Local heat transfer and flow structure on and above a dimpled surface in a channel. Transactions of the ASME. Journal of Turbomachinery, 2001,vol. 123, iss. 1, pp. 115 -- 123. DOI: 10.1115/1.1333694
  15. Mahmood G. I., Ligrani P. M. Heat transfer in a dimpled channel: Combined influences of aspect ratio, temperature ratio, Reynolds number, and flow Structure. Intern. J. of Heat and Mass Transfer, 2002, vol. 45, iss. 10, pp. 2011 -- 2020. DOI: 10.1016/S0017-9310(01)00314-3
  16. Burgess N. K., Oliveira M. M., Ligrani P. M. Nusselt number behavior on deep dimpled surfaces within a channel. Transactions of the ASME. J. of Heat Transfer, 2003, vol. 125, iss. 1, pp. 11-18. DOI: 10.1115/1.1527904
  17. Sunden B., Xie G., Wang Q. Predictions of enhanced heat transfer of an internal blade tip-wall with hemispherical dimples or protrusions. Transactions of the ASME. J. of Turbomachinery, 2011, vol. 133, iss. 4. 9 p. DOI: 10.1115/1.4002963
  18. Leontiev A.I., Dilevskaya E.V., Vinogradov Yu.A., Yermolaev I.K., Strongin M.M., Bednov S.M., Golikov A.N. Effect of vortex flows at surface with hollow-type relief on heat transfer coefficients and equilibrium temperature in supersonic flow. Experimental Thermal and Fluid Science, 2002, vol. 26, iss. 5, pp. 487-497. DOI: 10.1016/S0894-1777(02)00157-7
  19. Kiselev N.A., Burtsev S.A., Strongin M.M., Vinogradov Yu.A. Influence of parameters of array of dimples on thermohydraulic efficiency. 8thIntern. Symp. on Turbulence, Heat and Mass Transfer(Sarajevo, Bosnia and Herzegovina, Sept. 15-18, 2015): proceedings. N.Y.: Begell House Inc., 2015, pp. 753-756.
  20. Isaev S.A., Kornev N.V., Hassel E., Leontiev A.I. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel. Intern. J. of Heat and Mass Transfer, 2010, vol. 53, iss. 1-3, pp. 178 -- 197. DOI: 10.1016/j.ijheatmasstransfer.2009.09.042
  21. Isaev S.A., Leontiev A.I., Kornev N.V., Hassel E., Chudnovskii Y.P. Heat transfer intensification for laminar and turbulent flows in a narrow channel with one-row oval dimples. High Temperature, 2015, Vol. 53, Iss. 3, pp. 375 -- 386. DOI: 10.1134/S0018151X15030074
  22. Leontiev A.I., Olimpiev V.V. Energy saving potential of different methods of twist flow and discrete rough channels. Izvestiia RAN. Energetika[Proceedings of the Russian Academy of Sciences. Power Engineering], 2010, no. 1, pp. 13-49 (in Russ.).
  23. Leontiev A.I., Olimpiev V.V. The effect of intensifiers of heat transfer on the thermo-hydraulic properties of channels. High Temperature, 2007, vol. 45, no. 6, pp.844-870.
  24. Lan J., Xie Y., Zhang D. Flow and heat transfer in microchannels with dimples and protrusions. Transactions of the ASME. Journal of Heat Transfer, 2012, vol. 134, iss. 2. 9 p. DOI: 10.1115/1.4005096
  25. Zditovets A.G., Titov A.A. The influence of the shape of the surface of the insulated rod, washed by the supersonic flow, the temperature recovery factor. Izvestiia RAN. Energetika[Proceedings of the Russian Academy of Sciences. Power Engineering], 2007, no. 2, pp. 111-117 (in Russ.).
  26. Burtsev S.A. Analysis of influence of different factors on the value of the temperature recovery factor at object surfaces in case of an airflow. Review. Nauka i obrazovanie MGTU im. N.E.Baumana.[Science & Education of the Bauman MSTU], 2004, no. 11, pp. 1-28. DOI: 10.7463/1104.0551021
  27. Chyu M. K., Yu Y., Ding H., Downs J.P., Soechting F. O. Concavity enhanced heat transfer in an internal cooling passage. 42ndIntern. Gas Turbine and Aeroengine Congress and Exhibition (Orlando, FLA, USA, June 2-5 1997): Proceedings. N.Y.: ASME, 1997. Vol. 3. Pp. 1 -- 7. DOI: 10.115/97-GT-437
  28. Moon S. W., Lau S. C. Turbulent heat transfer measurements on a wall with concave and cylindrical dimples in a square channel. ASME Turbo Expo 2002: Power for Land, Sea and Air (Amsterdam, Netherlands, June 3-6 2002): Proceedings. N.Y.: ASME, 2002. Vol. 3. Pt. A and B. Pp. 459-467. DOI: 10.115/GT2002-30208
  29. Borisov I., Khalatov A., Kobzar S., Glezer B. Comparison of thermo-hydraulic characteristics for two types of dimpled surfaces. ASME Turbo Expo 2004: Power for Land, Sea and Air(Vienna, Austria, June 14-17, 2004): proceedings. N.Y.: ASME, 2004. Vol. 3. Pp. 933-942. DOI: 10.1115/GT2004-54204
  30. Jordan C.N., Wright L.M. Heat transfer enhancement in a rectangular (AR = 3:1) channel with V-shaped dimple. Transactions of the ASME. Journal of Turbomachinery, 2013, vol. 135, iss.1. 10 p. DOI: 10.1115/1.4006422
  31. Nagoga G.P. Effektivnye sposoby okhlazhdeniia lopatok vysokotemperaturnykh gazovykh turbin[Effective methods of cooling of blades of high-temperature gas turbines]. Moscow: MAI Publ., 1996. 100 p. (in Russ.).
  32. Burtsev S.A., Karpenko A.P., Leontiev A.I. A method for distributed production of liquefied natural gas at gas-distribution station. High Temperature, 2016, vol. 54, no. 4, pp. 573-576. DOI: 10.1134/S0018151X6030044
  33. Burtsev S.A. Analyzing ways to improve the efficiency of the Leontiev tube. Izvestiia vysshikh uchebnykh zavedenij. Mashinostroenie[Proceedings of the Higher Educational Institutions. Machine Building], 2016, no. 8, pp. 19-28. DOI: 10.18698/0536-1044-2016-8-19-28
  34. Kiselev N.A. Development of a method for determination of heat transfer coefficient and temperature recovery factor based on thermal picture of a plate surface streamlined by compressed gas flow. Thermal Processes in Engineering,2013, no.7, pp. 303-312.
  35. Kiselev N.A., Burtsev S.A., Strongin M.M. A procedure for determining the heat transfer coefficients of surfaces with regular relief. Measurement Techniques,2015, vol. 58, no. 9, pp. 1016-1022. DOI: 10.1007/s11018-015-0835-7
  36. Leontiev A.I., Kiselev N.A., Burtsev S.A., Strongin M.M., Vinogradov Yu.A. Experimental investigation of heat transfer and drag on surfaces with spherical dimples. Experimental Thermal and Fluid Science, 2016, vol. 79, pp. 74 -- 84. DOI: 10.1016/j.expthermflusci.2016.06.024
  37. Burtsev S.A., Kiselev N.A., Leontiev A.I. Peculiarities of studying thermohydraulic characteristics of relief surfaces. High Temperature, 2014, vol. 52, no. 6, pp. 8690872. DOI: 10.1134/S0018151X14060054
  38. Burtsev S.A., Vasil’ev V.K., Vinogradov Yu.A., Kiselev N.A., Titov A.A. Experimental study of parameters of surfaces coated with regular relief. Nauka i obrazovanie MGTU im. N.E.Baumana.[Science & Education of the Bauman MSTU], 2013, no. 1. Pp. 1-23. DOI: 10.7463/0113.0532996
  39. Burtsev S.A., Vinogradov Yu.A., Kiselev N.A., Strongin M.M. Experimental study of thermo-hydraulic characteristics of surfaces with in-line dimple arrangement. Nauka i obrazovanie MGTU im. N.E.Baumana.[Science & Education of the Bauman MSTU], 2015, no. 5, pp. 367-369. DOI: 10.7463/0515.0776160
  40. Fedotenkov I.D., Tsynaeva A.A. Study of flow aerodynamics in a channel with dumbbell-shaped dimples. Vestnik SGASU. Town Planning and Archtecture, 2016, no. 1 (22). Pp. 15-20. DOI: 10.17673/Vestnik.2016.01.3 (in Russ.).
  41. Chyu M.K., Hsing Y.C., Natarajan V. Convective heat transfer of cubic fin arrays in a narrow channel. Transactions of the ASME. Journal of Turbomachinery, 1998, vol. 120, iss. 2, pp. 362-367. DOI: 10.1115/1.2841414
  42. Ligrani P.M., Mahmood G.I. Variable property Nusselt numbers in a channel with pin fins. Journal of Thermophysics and Heat Transfer, 2003, vol. 17, no. 1, pp. 103 -- 111. DOI: 10.2514/2.6740
  43. Hwang J.-J., Lu C.-C. Lateral-flow effect on endwall heat transfer and pressure drop in a pin-fin trapezoidal duct of various pin shapes. ASME Turbo Expo 2000: Power for Land, Sea and Air (Munich, Germany, May 8-11, 2000): proceedings. N.Y.: ASME, 2000. Vol. 3. 9 p. DOI: 10.1115/2000-GT-0232
  44. Siw S.C., Chyu M.K., Alvin M.A. Effects of pin detached space on heat transfer in a rib roughened channel. ASME 2011 Turbo Expo: Turbine Technical Conf. and Exposition (Vancouver, Canada, June 6-10, 2011): proceedings. N.Y.: ASME, 2011. Vol.5 Pt. A and B. Pp. 1483-1493. DOI: 10.1115/GT2011-46078
  45. Cho H.H., Lee S.Y., Wu S.J. The combined effects of rib arrangements and discrete ribs on local heat/mass transfer in a square duct // ASME Turbo Expo 2001: Power for Land, Sea and Air (New Orleans, LA, USA, June 4-7, 2001): proceedings. N.Y.: ASME, 2001. Vol. 3. Pp. 1 -- 11. DOI: 10.1115/2001-GT-0175
  46. Ivanov V.L., Leontiev A.I., Manushin E.L., Osipov M.I. Teploobmennye apparaty i sistemy okhlazhdeniia gazoturbinnykh i kombinirovannykh ustanovok[Heat exchangers and cooling systems gas turbine and combined plants]. Moscow: BMSTU Publ., 2003. 591 p. (in Russ.).
  47. Bergles A.E., Bllumenkrantz A.R., Taborek J. Performance evaluation criteria for enhanced heat transfer surfaces. 5thIntern. Heat Transfer Conf. IHTC-5 (Tokyo, Japan, Sept. 3-7, 1974): proceedings. Tokyo: JSME, 1974. Vol. 2. Pp. 239-243.
  48. Popov I.A., Makhianov Kh.M., Gureev V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena[Physical basics and industrial applications of heat transfer enhancement] / Ed. By Yu.M. Gortyshov. Kazan, 2009. 560 p. (in Russ.).
  49. Kutateladze S.S., Leontiev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe[Teplomassoobmen and friction in a turbulent boundary layer]. 2nded. Moscow: Energoatomizdat Publ., 1985. 320 p. (in Russ.).
  50. Schlichting H. Boundary-layer theory. 7thed. N.Y.: McGraw-Hill, 1979. 817 p.
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2019 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)