Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

# 12, December 2016
DOI: 10.7463/1216.0852463
Article file: SE-BMSTU...o109.pdf (1127.57Kb)
authors: V.A. Gorodnichev1, M.L. Belov1,*, L.N. Eremenko1, V.V. Nazarov1

1 Bauman Moscow State Technical University, Moscow, Russia

Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution.
A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms.
When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise.
In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary) air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler.
The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements.
With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement) must be used stable (robust) estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters.
The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot.
To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted.
The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of the error dependence on the Huber parameter for all gas components is the same. When an optimal Huber parameter (~ 0.00025 - 0.000025 in case of the specific mixture used in mathematical modelling) is selected the measurement errors of concentrations for all gas components are much smaller than the measurement errors when using the standard method of least squares.

  1. Gorodnichev V.A. Razrabotka metodov i optiko-elektronnykh sredstv lazernogo operativnogo kontrolia mnogokomponentnykh gazovykh smesej sostavliayuschikh raketnykh topliv i drugikh toksichnykh veschestv[Development of methods and optical-electronic means of laser operational control of multicomponent gas mixtures the components of rocket propellants and other toxic substances. Doct. diss.]. Moscow, 2009. 307 p. (in Russ.).
  2. Stepanov E.V. Diodnaia lazernaia spektroskopiia i analiz molekul-biomarkerov [Diode laser spectroscopy and analysis of biomarker molecules]. Moscow: Fizmatlit Publ., 2009. 416 p. (in Russ.).
  3. Demtroeder W. Laser spectroscopy. 4thed. B.: Springer, 2008. Vol. 1-2. (Russ. ed.: Demtroeder W. Sovremennaia lazernaia spektroskopiia.Dolgoprudnyj: Intellekt Publ., 2014. 1071 p.).
  4. Eremenko L.N. Metod opredeleniia kolichestvennogo sostava slozhnykh gazovykh smesej lazernym optiko-akustichekim analizatorom[Method of determining the quantitative composition of complex gas mixtures laser opto-acoustic analyzer. Cand. diss.]. Moscow, 2010. 142 p. (in Russ.).
  5. Osnovy kolichestvennogo lazernogo analiza [Fundamentals of quantitative laser analysis] / Ed. by V.N. Rozhdestvin. Moscow: BMSTU Publ., 2006. 463 p. (in Russ.).
  6. Neubauer A. Inverse and Ill-Posed Problems. Available at:http://www.impan.pl/BC/Arch/2008/08NeubauerCourse.pdf, accessed 20.09.2016.
  7. Engl H.W., Hanke M., Neubauer A. Regularization of inverse problems. Dordrecht; Boston: Kluwer, 1996. 321 p.
  8. Eremenko L.N., Kozintsev V.I., Gorodnichev V.A. Method of Bayesian estimates in the problem of laser gas analysis. Russian Physics Journal,2008, vol. 51, no. 9, pp. 912-918. DOI: 10.1007/s11182-009-9135-5
  9. Suschestvyyuschie podkhody k resheniyu nekorrektnykh zadach[Existing approaches to solving ill-posed problems]. Available at:http://pelbook.narod.ru/2004/02.htm, accessed 20.09.2016.
  10. Kataev M.Yu., Bojchenko I.V. Programmnoe i metodicheskoe obespechenie zadach lidarnogo zondirovaniia atmosfery[Software and methodological support of problems of lidar sensing of the atmosphere]. Tomsk: STT Publ., 2007. 236 p. (in Russ.).
  11. Gorodnichev V.A. Methods of recovery of gas concentration for the problem of lidar monitoring of gaseous pollutants. Biomedical Radioelectronics, 2003, no. 9, pp. 52-56. (in Russ.).
  12. Krianev A.V., Lukin G.V. Matematicheskie metody obrabotki neopredelennykh dannykh[Mathematical methods of processing of uncertain data]. Moscow: Fizmatlit Publ., 2003. 212 p. (in Russ.).
  13. Krianev A.V., Lukin G.V. Metricheskij analiz i obrabotka dannykh[Metric analysis and data processing]. Moscow: Fizmatlit Publ., 2010. 280 p. 352 p. (in Russ.).
  14. Kozintsev V.I., Belov M.L., Gorodnichev V.A., Fedotov Yu.V. Lazernyj optiko-akusticheskij analiz mnogokomponentnykh gazovykh smesej[Laser optical acoustic analysis of multicomponent gas mixtures]. Moscow: BMSTU Publ., 2003. (in Russ.).
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2019 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)