Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping

# 12, December 2016
DOI: 10.7463/1216.0852758
Article file: SE-BMSTU...o071.pdf (1308.83Kb)
authors: D.V. Duhopel'nikov1, S.G. Ivakhnenko1,*, V.A. Ryazanov1, S.O. Shilov1

1 Bauman Moscow State Technical University, Moscow, Russia

The paper considers the application of the Hall thruster using the ambient atmospheric air for orbital station keeping. This is a relevant direction at the up-to-date development stage of propulsion systems. Many teams of designers of electric rocket thrusters evaluate the application of different schemes of particle acceleration at the low-earth orbit. Such technical solution allows us to abandon the storage systems of the working agent on the spacecraft board. Thus, lifetime of such a system at the orbit wouldn`t be limited by fuel range. The paper suggests a scheme of the propulsion device with a parabolic confuser that provides a required compression ratio of the ambient air for correct operation. Formulates physical and structural restrictions on ambient air to be used as a working agent of the thruster. Pointes out that the altitudes from 200 to 300 km are the most promising for such propulsion devices.  Shows that for operation at lower altitudes are required the higher capacities that are not provided by modern onboard power supply systems. For the orbit heightening the air intakes with significant compression rate are of necessity. The size of such air intakes would exceed nose fairing of exploited space launch systems. To perform further design calculations are shown dependencies that allow us to calculate an effective diameter of the thruster channel and a critical voltage to be desirable for thrust force excess over air resistance. The dependencies to calculate minimal and maximal fluxes of neutral particles of oxygen and nitrogen, that are necessary for normal thruster operation, are also shown. Calculation results of the propulsion system parameters for the spacecrafts with cross-sectional area within 1 - 3 m2 and inlet diameter of air intake within 1 - 3 m are demonstrated. The research results have practical significance in design of advanced propulsion devices for low-altitude spacecrafts.
The work has been supported by the RFFR grant 16-38-00776\16 as of 25.02.2016

  1. ASPOS OKP: Avtomatizirovannaia sistema preduprezhdeniia ob opasnykh situatsiiakh v okolozemnom kosmicheskom prostranstve. Available at: http://www.aspos.mcc.rsa.ru/, accessed 24.11.2016 (in Russ.).
  2. Garrigues L. Study of a Hall effect thruster working with ambient atmospheric gas as propellant for low earth orbit missions. 32nd Intern. Electric Propulsion Conference: IEPC 2011 ( Wiesbaden, Germany, Sept. 11-15 2011): Proc. Giessen, 2011. 12 p.
  3. Nishiyama K. Air breathing ion engine. 24th Intern. Symp. on Space Technology and Science ( Miyazaki City, Japan, May 30- 6 June 2004): Proc. Miyazaki City, 2004.
  4. Hisamoto Y., Nishiyama K., Kuninaka H. Development statue of atomic oxygen simulator for air breathing ion engine. 32nd Intern. Electric Propulsion Conference. IEPC 2011 ( Wiesbaden, Germany, Sept. 11-15 2011): Proc. Giessen, 2011.
  5. Hohman K. Atmospheric breathing electric thruster for planetary exploration. Natick: Busek Co. Inc., 2012. 14 p. Режимдоступа:https://www.nasa.gov/directorates/spacetech/niac/hohman _atmospheric_breathing_.html
  6. Dukhopel'nikov D.V., Ivakhnenko S.G., Kurilovich D.A. Air breathing Hall effect thrusters for low Earth orbit spacecraft. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2013, no. 12. DOI: 10.7463/1213.0660910
  7. Grishin S.D., Leskov L.V. Elektricheskie raketnye dvigateli kosmicheskikh apparatov [Electric rocket engines of space vehicles]. Moscow: Mashinostroenie Publ., 1989. 276 p. (in Russ.).
  8. Kvasnikov L.A., Latyshev L.A., Ponomarev-Stepnoy N.N. a.o. Teoria i raschet energosilovykh ustanovok kosmicheskikh letaltel’nykh apparatov [Theory and calculation of energy-power plants of spacecraft]. Moscow: MAI Publ., 2001. 480 p. (in Russ.).
  9. Scharfe M K. Electron cross field transport modeling in radial-axial hybrid Hall thruster simulations: Doct. diss. Stanford, 2009. 227 p.
  10. Raketa-nositel’ «Proton-M» [The rocket carrier «Proton-M»]. Available at:http://www.khrunichev.ru/main.php?id=42, accessed 24.11.2016 (in Russ.).
  11. AO “RKTS “Progress” [Joint-stock company “Space Rocket Centre “Progress”]. Available at:http://samspace.ru/, accessed 24.11.2016 (in Russ.).
  12. Space Environment Technologies. Available at: http://www.spacewx.com, accessed 24.11.2016.
  13. GOST 4401-81. Atmosphera standartnaia. Parametry. Vved. 1982-07-01 [State standard 4401-81. Standard atmosphere. Parameters. Intr. 1982-07-01]. Moscow: Standard Publ., 2004. 175 p. (in Russ.).
  14. Shabshelowitz A. Study of RF plasma technology applied to air-breathing electric propulsion: Doct. diss. Ann Arbor, 2013. 158 p.
  15. Itikawa Yu. Cross sections for electron collisions with nitrogen molecules. J. of Physical and Chemical Reference Data, 2006, vol. 35, no. 1. DOI: 10.1063/1.1937426
  16. Itikawa Yu. Cross sections for electron collisions with oxygen molecules. J. of Physical and Chemical Reference Data, 2009, vol. 38, no. 1. DOI: 10.1063/1.3025886
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2017 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)